ООО "Профитт"

Руководство по эксплуатации ВИПР3.039.077 v1.07

> Санкт-Петербург 26 декабря 2023 г.

Содержание

1.	Общая информация	3
2.	Описание и работа	3
	2.1. Назначение	3
	2.2. Технические характеристики	4
	2.2.1. Общие технические характеристики	4
	222 Перечень интерфейсов	4
	2.2.3. Интерфейс ASI	4
	2.2.6. Интерфействанспортного потока через IP (TSoIP)	5
	2.2.1. Интерфене Гранспортного потока перез II (1901)	5
	2.2.0. Interprete haerporki i ynpastening control	5
	2.9. 9 Chodra Skennyaradum	5
	2.4. Cociab	0 6
	2.5. Устроиство и работа	07
	2.0. Конструктивное исполнение	1
3	Использование по назначению	7
υ.		7
	3.2. Монтрук истройство	8
		0
		0
	3.2.2. Подключение видеосигналов	0
		0
	3.2.4. Подключение к питающему напряжению	9
	3.3. Включение устроиства	9
	3.4. Настройки при первом включении	9
	3.5. Управление устройством	.0
	3.5.1. Управление инкапсулятором «ASI to IP»	.0
	3.5.2. Управление деинкапсулятором «IP to ASI»	.0
	3.5.3. Управление размером приёмного буфера	.1
	3.5.4. Диагностика	2
	3.6. Восстановление заводских настроек	2
	3.7. Перечень возможных неисправностей и рекомендации по действиям при их	
	возникновении	4
	3.8. Действия в экстремальных условиях	4
4.	Техническое обслуживание	4
	4.1. Общие указания	4
	4.2. Меры безопасности	4
	4.3. Порядок технического обслуживания	.4
	4.4. Проверка работоспособности	5
5.	Хранение	5
6.	Транспортирование 1	5

1. Общая информация

Настоящее руководство по эксплуатации предназначено для изучения устройства, принципа действия и особенностей эксплуатации конвертера двунаправленного TSoIP – DVB-ASI PBX-ENP-200 (далее – конвертер).

Данный документ является основным документом по эксплуатации и техническому обслуживанию и предназначен для обслуживающего персонала. В нем приведены сведения, необходимые для правильной эксплуатации изделия, обнаружения и устранения неисправностей, проведения технического обслуживания.

Предприятие-изготовитель оставляет за собой право вносить незначительные изменения, не ухудшающие технические характеристики изделия. Данные изменения могут быть не отражены в тексте настоящего документа.

2. Описание и работа

2.1. Назначение

Конвертер PBX-ENP-200 – это законченное аппаратное решение для преобразования ASI в IP, IP в ASI (рис. 1). Устройство представляет из себя двунаправленный ASI-IP шлюз, который обеспечивает универсальное, эффективное и масштабируемое решение для доставки цифрового TB-контента по IP-сетям. Конвертер обеспечивает двунаправленную передачу двух независимых сигналов ASI (MPEG T2-MI) через IP/Ethernet.

Рис. 1. PBX-ENP-200. Внешний вид.

Настройка и управление устройством осуществляется с помощью встроенного web-интерфейса.

Конвертер двунаправленный TSoIP – DVB-ASI PBX-ENP-200 представляет собой законченное устройство и предназначен для круглосуточного режима работы.

2.2. Технические характеристики

2.2.1. Общие технические характеристики

Общие технические характеристики конвертера двунаправленного TSoIP – DVB-ASI PBX-ENP-200 представлены в таблице 1.

Параметр	Значение
Электропитание	517 B
Потребляемая мощность, не более	8 Вт
Габариты (ВхШхГ)	34х105х160 мм
Масса, не более	0,9 кг
Режим работы	круглосуточный

Таблица 1. Общие характеристики

2.2.2. Перечень интерфейсов

В таблице 2 представлен перечень входных и выходных интерфейсов устройства.

Описание	Тип разъёма	Обозначение	Кол-во
Входы видео	BNC	ASI IN	2
Выходы видео ВNС		ASI OUT	2
Comonoŭ uumondoŭe	100 Mbps Ethernet, RJ-45	CONTROL	1
Сетевой интерфеис	Gigabit Ethernet, RJ-45	TS IP	1
Разъём питания	712RA, гнездо 5.5х2.1мм	POWER	1

Таблица 2. Интерфейсы устройства

2.2.3. Интерфейс ASI

Параметры интерфейса ASI представлены в таблице 3.

Параметр	Описание		
Вход	2 x BNC (75 Ом)		
Выход	2 x BNC (75 Ом)		
Стандарт	DVB-ASI (EN 50083-9, Annex B)		
Режим	Burst		
Размер пакета	188 байт		
Скорость входных данных	213 Мбит/с		

Таблица 3. Параметры интерфейса ASI

2.2.4. Интерфейс транспортного потока через IP (TSoIP)

В таблице 4 представлены характеристики интерфейса TSoIP.

Параметр	Описание
Сетевой интерфейс	Gigabit Ethernet / IEEE 802.3ab 1000BaseTX
Тип соединителя	RJ-45
Сетевые протоколы	IP, UDP, RTP, ARP, IGMPv2
Метод передачи данных	Multicast и Unicast
ТS Инкапсуляция	SMPTE 2022-2
Прямое исправление ошибок (FEC)	SMPTE 2022-1
Обработка потока	Передача без изменений (Transparent)
Скорость потока (Bitrate)	до 700 Мбит/c

Таблица 4.	Характери	истики	интерфейса	TSoIP
			T T T	

2.2.5. Интерфейс настройки и управления Control

Параметры интерфейса Control представлены в таблице 5.

Параметр	Описание		
Сетевой интерфейс	100 Mbps Ethernet / EEE 802.3 u 100 BaseT		
Тип соединителя	RJ-45		
Сетевые протоколы	HTTP		
Номера используемых портов	22, 80, 123, 8080		

Таблица 5. Характеристики интерфейса Control

2.3. Условия эксплуатации

Устройство предназначено для круглосуточной работы в стационарном помещении с температурой окружающего воздуха от +5 до +45°C, относительной влажности не более 80% при температуре 25°C, атмосферном давлении 750 ± 30 мм рт. ст.

2.4. Состав

В состав изделия входят следующие элементы:

- конвертер двунаправленный TSoIP DVB-ASI PBX-ENP-200,
- адаптер питания,
- руководство по эксплуатации,
- паспорт.

2.5. Устройство и работа

На рис. 2 представлена структурная схема конвертера PBX-ENP-200. Устройство состоит из двух однонаправленных инкапсуляторов транспортного потока «ASI to IP» и двух однонаправленных деинкапсуляторов для видеосигналов «IP to ASI».

Рис. 2. PBX-ENP-200. Структурная схема

Инкапсулятор принимает транспортный поток с входа ASI и конвертирует его в поток IP MPTS. Процесс инкапсуляции соответствует SMPTE 2022-2. FEC может быть добавлен к каждому из IP-потоков, созданных в инкапсуляторе, который совместим с SMPTE 2022-1.

Деинкапсулятор извлекает данные из транспортного потока IP MPTS в транспортный поток ASI. Сигнал «ASI» соответствует стандартам транспортных потоков DVB и ISO/IEC MPEG-2.

Каждый выходной поток содержит те же услуги и таблицы PSI/SI, что и соответствующий транспортный поток на входе. Преобразование происходит напрямую, без обработки или изменения содержимого потока.

2.6. Конструктивное исполнение

Конструктивно устройство выполнено в металлическом корпусе размерами (ВхШхГ) 34х105х160 мм и предназначено для установки на ровной горизонтальной поверхности внутри помещения. Использование монтажной планки 1U PM-022 дает возможность крепления блока к 19"стойке. На рис. 3 представлены передняя и задняя панели конвертера PBX-ENP-200 на которых расположены разъёмы подключения и индикаторы состояния.

Рис. 3. PBX-ENP-200. Передняя и задняя панели.

3. Использование по назначению

Для обеспечения нормального функционирования и повышения срока службы устройства необходимо соблюдать следующие требования по уходу и сбережению:

- при работе соблюдать номинальный режим источника питания;
- своевременно обнаруживать и устранять механические и электрические неисправности;
- при устранении неисправностей в местах электрических соединений проводить работу с обязательным отключением питающего напряжения, соблюдая общие правила по ремонту радиотехнической аппаратуры;
- пользоваться только исправным инструментом и контрольно-измерительной аппаратурой;
- при замене применять только кондиционные изделия;
- соблюдать сроки и порядок проведения технического обслуживания.

3.1. Подготовка к использованию

Подготовка устройства к использованию начинается с внешнего осмотра. При внешнем осмотре изделия следует проверить:

- комплектность в соответствии с формуляром (паспортом);
- отсутствие видимых механических повреждений;
- чистоту гнезд, разъемов и клемм;
- состояние соединительных проводов, кабелей, переходников;
- состояние лакокрасочных покрытий и четкость маркировок;
- отсутствие отсоединившихся или плохо закрепленных модулей изделия (определяется визуально или на слух при изменении положения изделия).

3.2. Монтаж устройства

Перед началом работы необходимо внимательно изучить настоящее руководство. Ознакомьтесь с указаниями по технике безопасности. Выполняйте только те работы, которые описаны в настоящем руководстве.

К монтажу, наладке и техническому обслуживанию устройства допускаются лица, имеющие квалификационную группу по электробезопасности не ниже третьей, прошедшие курс обучения и получившие соответствующее удостоверение. Монтаж устройства должен производиться в помещениях, имеющих атмосферу, не содержащую химически активных и агрессивных паров и токопроводящей пыли, в местах, защищённых от прямого попадания солнечных лучей и воды.

При стыковке аппаратуры необходимо соблюдать меры защиты от статического электричества.

3.2.1. Подготовительные работы

Подготовьте оборудование, которое будет являться источником и приемником сигналов и все необходимые соединительные кабели.

Разместите устройство на устойчивой поверхности. При установке необходимо оставить промежуток не менее 10 см между задней панелью устройства и другим оборудованием или стеной.

После установки устройства к нему подводят кабели внешних подключений. Все подключения нужно проводить при выключенном питании устройств, соединяемых между собой. Перед включением необходимо проверить правильность произведенного монтажа.

3.2.2. Подключение видеосигналов

Выполните необходимые подключения источников и приемников видеосигнала, используя для этого соответствующие кабели. Источники видеосигнала соедините с входами «ASI IN», а получателей с выходами «ASI OUT» (рис. 3, б).

3.2.3. Подключение к сети Ethernet

Подключите конвертор к локальной сети кабелем Ethernet (UTP) (рис. 4). Возможно использование как экранированного Ethernet кабеля, так и неэкранированного, категории 5 или выше, совместимого со стандартом 100/1000BaseT или 100/1000BaseTX. Длина кабеля не должна превышать 100 метров.

Рис. 4. Сетевой интерфейс Ethernet

Одним кабелем соедините порт «TS IP» (RJ-45) с приемником транспортного потока TSoIP (Transport Stream Over IP) (рис. 4, а).

Другим кабелем подключите компьютер к разъему управления «CONTROL» (RJ-45) (рис. 4, б). Через этот порт осуществляется мониторинг и конфигурация устройства.

3.2.4. Подключение к питающему напряжению

Питание устройства осуществляется от сети постоянного тока напряжением +5..17 В. Подключите разъём адаптера питания к конвертеру через разъём «DC +5..17V» (рис. 5).

Рис. 5. Разъём питания

3.3. Включение устройства

Подайте питающее напряжение на устройство. Для этого вставьте вилку адаптера питания в сеть. Индикатор питания засветится красным цветом. Дождитесь завершения загрузки операционной системы и программного обеспечения.

Время готовности устройства к работе – 20-30 секунд.

3.4. Настройки при первом включении

Устройство поставляется с предустановленными сетевыми настройками по умолчанию. Для управления конвертером через web-интерфейс необходимо, чтобы сетевые настройки устройства и управляющего компьютера находились в одной подсети и использовали правильные IP-адреса.

Перед началом использования устройства требуется выполнить процедуру конфигурации соединения Ethernet. Подключите компьютер к порту «CONTROL» (рис. 4, б) и с помощью утилиты profitt-di установите следующие параметры:

- сетевой IP-адрес (IP address),
- маска подсети (Netmask),
- сетевой шлюз (Gateway),
- IP-адрес назначения (Destination IP).

В строке «Destination IP» установите IP-адрес порта «TS IP».

Утилита profitt-di доступна на сайте www.profitt.ru в разделе «Поддержска» http://www.profitt.ru/SOFT/Profitt_di.zip.

3.5. Управление устройством

Подключитесь к встроенному web-серверу. Для этого на компьютере в адресной строке web-браузера наберите IP-адрес устройства.

В случае успешного подключения появится основная страница web-интерфейса (см. рис. 6). Страница содержит в себе четыре панели, каждая из которых позволяет осуществлять мониторинг и конфигурировать различные параметры конвертера.

Наличие транспортных потоков ASI и IP отображается с помощью индикаторов зелёного цвета на лицевой панели (рис. 3, а), также в поле **Status** web-интерфейса.

3.5.1. Управление инкапсулятором «ASI to IP»

Параметры настроек инкапсулятора расположены на панели ASI to IP (см. рис. 6).

С помощью опции **Туре** осуществляется выбор протокола вещания (режим инкапсуляции):

- RTP (Real-Time Transport Protocol),
- UDP (User Datagram Protocol).

В полях IP и Port указываются сетевой адрес и номер порта, на который будет производиться вещание.

Для протокола RTP можно задать параметры исправления ошибок методом упреждения FEC (L,D) (Forward Error Correction), где L – количество защищаемых пакетов в строке, D – в столбце.

Параметр Bitrate отображает значение скорости входного потока.

Цвет индикатора **Status** информирует о наличии (зелёный) или отсутствии (красный) входного потока ASI.

3.5.2. Управление деинкапсулятором «IP to ASI»

Параметры настроек деинкапсулятора расположены на панели IP to ASI (см. рис. 6). Режимы трансляции видеопотоков Unicast и Multicast задаются с помощью опции

Address Type.

В полях IP и Port указываются сетевой адрес и номер порта источника вещания.

Параметр Bitrate выводит значение скорости входного потока.

Цвет индикатора Status информирует о наличии (зелёный) или отсутствии (красный) входного потока IP.

PBX-ENP- ASI IP GATEW	• 200 VAY				¢
ASI to IP		1	ASI to IP		2
Туре	RTP	~	Туре	RTP	~
IP:	239.192.0.1		IP:	239.1.1.40	
Port:	9998		Port:	1234	
FEC L:	10		FEC L:	10	
FEC D:	10		FEC D:	10	
Bitrate:	0		Bitrate:	0	
Source IP:	192.168.2.233		Source IP:	192.168.2.233	
Status:			Status:		
IP to ASI		1	IP to ASI		2
Address Type	Multicast	~	Address Type	Multicast	~
IP:	239.1.1.50		IP:	239.192.0.2	
Port:	4321		Port:	9999	
Bitrate:	0		Bitrate:	0	
Status:			Status:		
Settings		1	Settings		2
Buffer size (ms):	15		Buffer size (ms):	15	
		Cancel	Apply		

Рис. 6. Web-интерфейс устройства

3.5.3. Управление размером приёмного буфера

Устройство обеспечивает буферизацию поступающих потоковых данных. Буфер используется для компенсации разницы между скоростью поступающих данных и скоростью их обработки. Кроме того буфер обеспечивает компенсацию вариаций задержки (джиттера) при передаче пакета по каналу. Чем больше размер буфера, тем выше способность системы справляться с неравномерностью поступления данных. Размер буфера влияет на время задержки сигнала в устройстве. Чем меньше размер буфера, тем меньше задержка.

Существует ряд факторов, влияющих на задержку, но размер буфера – самый важный из них и единственный, который может регулировать пользователь. Для настройки размера буфера используйте параметр BufferSize на панели Settings (см. рис. 6). Размер буфера указывается в миллисекундах. Значение можно менять в диапазоне от 50 до 2000 мс.

3.5.4. Диагностика

Нажмите на иконку 🍄 в правом верхнем углу web-интерфейса (см. рис. 6), чтобы получить доступ к диагностической информации. Появится окно вида, как показано на рис. 7.

PBX-ENP-200 ASI IP GATEWAY			→
Status Info		Version Info	
Temperature, °C:	26.25	Build Date:	20200916
System Uptime:	Oh 1m	FPGA Date:	20200819
Supply current, mA:	563	Software Version:	1.13-r2 (Sep 16 2020)
	Reboot	Frontend Version:	1.2-r2 (May 08 2020)

Рис. 7. Панель Diagnostics

Информация о состоянии устройства отображается на панелях Status Info и Version Info панели Diagnostics:

- Temperature температура внутри корпуса,
- System Uptime время непрерывной работы устройства,
- Supply current ток потребления.
- Build Date дата сборки программного обеспечения,
- FPGA Date дата сборки виртуального аппаратного обеспечения (hardware version),
- Software Version версия программы управления,
- Frontend Version номер версии пользовательского интерфейса.

3.6. Восстановление заводских настроек

Для восстановления заводских настроек необходимо выполнить следующие шаги:

1. Отключите питание.

2. Нажмите и удерживайте кнопку Factory Reset (рис. 8) на лицевой панели устройства.

- 3. Подайте питание.
- 4. Дождитесь загрузки операционной системы устройства (примерно 30 сек).
- 5. Отпустите кнопку Factory Reset.

После сброса настроек IP-адреса будут иметь значения указанные в табл. 6.

Конфигурация локальной сети				
CONTROL	192.168.0.209/24			
TS IP	169.254.0.209/24			

Таблица 6. Заводские установки

3.7. Перечень возможных неисправностей и рекомендации по действиям при их возникновении

Перечень возможных неисправностей и рекомендации по их устранению приведены в табл. 7.

Неисправность	Рекомендации		
Устройство недоступно по выбранному IP-адресу для конфигурирования	Проверитьнастройкисети:IP-адрес(IP address),маскуподсети(Netmask),адрес сетевогошлюза(Gateway)		
Не горят светодиоды на лицевой панели, в том числе светодиод питания	Проверить исправность кабеля питания и его подключение к устройству		
Трансляция или приём IP-потока по Проверить правильность указания адр указанному адресу не осуществляется значения и порта назначения			

Таблица 7.	Перечень	возможных	неисправностей
------------	----------	-----------	----------------

3.8. Действия в экстремальных условиях

При возникновении пожара, затопления и прочих экстремальных условий устройство необходимо обесточить.

4. Техническое обслуживание

4.1. Общие указания

Техническое обслуживание устройства должно производиться подготовленным персоналом с целью обеспечения нормальной работы устройства в течение всего срока службы.

4.2. Меры безопасности

При проведении работ по техническому обслуживанию устройства должны выполняться требования действующих инструкций по технике безопасности и пожаробезопасности. Работы с устройством должны проводиться на оборудованном рабочем месте с применением исправных измерительных приборов и технологического оборудования. К работам по техническому обслуживанию конвертера должны допускаться лица, изучившие настоящее руководство по эксплуатации и имеющие соответствующую квалификацию для работы с радиоэлектронным оборудованием.

4.3. Порядок технического обслуживания

Рекомендуемые сроки и виды проведения профилактических работ:

- визуальный осмотр каждые три месяца,
- внешняя чистка каждые 12 месяцев.

4.4. Проверка работоспособности

Проведите пробное включение конвертера с использованием корректных настроек. Критерием работоспособности изделия является корректное преобразование потоков из ASI в IP и обратно.

5. Хранение

Устройство должено храниться в закрытом помещении или в транспортной таре при температуре окружающей среды от $+5^{\circ}{\rm C}$ до $+40^{\circ}{\rm C}$ и относительной влажности воздуха до 80%.

6. Транспортирование

Изделие может транспортироваться любым видом крытого транспорта или в контейнерах с обязательным креплением транспортной тары к транспортному средству в соответствии с правилами перевозки, действующими на данном виде транспорта.